Schwarz–Pick Lemma for Harmonic Functions

نویسندگان

چکیده

Abstract Based on the recently proven Khavinson conjecture, we establish an inequality of Schwarz–Pick type for harmonic functions unit ball $\mathbb{R}^n$.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability for certain subclasses of harmonic univalent functions

In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.

متن کامل

A certain convolution approach for subclasses of univalent harmonic functions

In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.  

متن کامل

Abel’s Lemma and Identities on Harmonic Numbers

Recently, Chen, Hou and Jin used both Abel’s lemma on summation by parts and Zeilberger’s algorithm to generate recurrence relations for definite summations. Meanwhile, they proposed the Abel-Gosper method to evaluate some indefinite sums involving harmonic numbers. In this paper, we use the Abel-Gosper method to prove an identity involving the generalized harmonic numbers. Special cases of thi...

متن کامل

A lower estimate of harmonic functions

We shall give a lower estimate of harmonic‎ ‎functions of order greater than one in a half space‎, ‎which‎ ‎generalize the result obtained by B‎. ‎Ya‎. ‎Levin in a half plane‎.

متن کامل

a certain convolution approach for subclasses of univalent harmonic functions

in the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab158